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The development of functional materials is crucial for addressing global challenges such as clean energy, water, and food supply, the
discovery of new drugs and antibiotics, and climate change. However, the current process for developing and bringing new materials
to market is time-consuming and requires significant financial and human resources. Functional material systems are typically com-
posed of functional molecular building blocks, organized across multiple length scales in a hierarchical order. This large design space
allows for precise tuning of properties and tailoring to specific applications, but also makes it difficult to screen for optimal structures
using traditional trial and error or high-throughput experimental methods. Machine learning (ML) models have the potential to rev-
olutionize the field of materials science by predicting synthesis and materials properties with high accuracy. However, ML models
require data to be trained and validated. Methods to automatically extract data from scientific literature makes it possible to build
large and diverse datasets for ML models. In this perspective article, we will discuss opportunities and challenges of data extraction
and machine learning methods to accelerate the discovery of high-performing functional material systems, while ensuring that the
predicted materials are stable, synthesizable, scalable, and sustainable. We discuss the potential impact of large language models
(LLM) on the data extraction process and ML workflows. Additionally, we will discuss the importance of research data management
tools to overcome intrinsic limitations of data extraction approaches.
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1 Introduction

A current challenge for research on functional material systems is the need to simultaneously consider
multiple aspects from different disciplines to achieve optimal design [1, 2, 3]. This includes the compo-
nents of materials, the structure of materials across different length scales, and every aspect of the final
device and its operation conditions [4, 5, 6, 7]. Additionally, environmental impact, circularity, and sus-
tainability become increasingly important. All these individual aspects represent objectives for the de-
sign of functional material systems. To navigate this multidimensional design space with multiple objec-
tives, researchers need to work across different disciplines in joint projects, considering expertise and re-
search from these different disciplines [8, 9, 10]. To support and enable research in the area of functional
material systems, automated data extraction from literature, using natural language processing, com-
bined with machine learning can be used to operate on large amounts of data representing community
knowledge to complement the researchers’ own knowledge and experimental results [11, 12, 13]. Thus,

a collaborative and interdisciplinary approach, coupled with the use of automated data extraction and
machine learning, is necessary to enable the development of functional material systems that optimally
meet multiple objectives. After identifying the optimal design of functional material systems, the syn-
thesis of such complex hierarchically organized materials represents an additional challenge. The syn-
thesis of functional material systems can be subdivided into the synthesis of molecular components and
the assembly of these components with specific composition and morphology in the nano- or micrometer-
length scale. In the next step, the materials are processed, e.g. into thin films, membranes, or certain
reactor designs, in order to implement and “fit” the materials to the final device. All these steps need
tailored synthesis and processing conditions to ensure their performance. Next to the design, also the
synthesis, characterization, and processing of functional material systems can be supported and enabled
by data extraction and machine learning of the material science literature and databases [14, 15, 16].
The synthesis, characterization, processing, and application of functional material systems produce large
amounts of hierarchical, or interdependent data. Making this data machine-readable and ready for ma-
chine learning and combining it with data extracted from scientific literature represents a particular chal-
lenge [17]. The use of tailored research data infrastructure is highly recommended, especially when work-
ing in large interdisciplinary consortia. Thus, the development of such research data management tools
represents an essential task for the scientific community. Such tools should combine aspects from data
collection, over data processing, to storing and publishing, ideally the raw and processed research data
along with metadata [18, 19, 20]. In this perspective, we will briefly outline the design, synthesis, and
characterization of functional material systems using metal-organic frameworks as example materials.
Following this outline, we will highlight selected publications on enabling functional materials systems
using a combination of automated data extraction and machine learning. We will discuss the accom-
plishments, prospects, challenges, and limitations of this approach. In the end, we will conclude with

a discussion on research data management tools and unifying material science ontology [21]. The com-
bination of research data management, data extraction from scientific literature, and machine learning
are essential to fully explore the potential of functional material systems in addressing urgent social, eco-
nomic, and environmental challenges.

2 Functional material systems

Functional material systems are typically composed of functional molecular building blocks, organized
across multiple length scales in a hierarchical order. Metal-Organic Frameworks (MOFs) emerged as a
particularly powerful class of functional material systems [22, 23, 24]. Their modular synthesis enables
the incorporation of diverse functionalities and tuning of their structures for desired applications [25].
The chemical design space of new metal-organic frameworks (MOFSs) is virtually unlimited, due to the
numerous possibilities of combining metal nodes and organic linkers. Currently, about 100,000 MOF's
have been synthesized and over 500,000 predicted [26, 27]. However, the wide design space also makes it
impossible to screen for optimal structures via brute force trial and error or traditional high-throughput
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experimental screening approaches [28]. Multiple techniques were developed for the synthesis of MOF's
to control their structure across multiple length scales [29]. Starting from the synthesis of the organic
linkers and precursors of metal nodes to the crystal synthesis and processing in the desired shape and
formulation. The synthesis of MOFs started with solvothermal synthesis via multiple heating methods,
over time new techniques were added, such as mechanochemical, vapor phase synthesis, and sacrificial
or epitaxial growth [30]. The choice of synthesis conditions and the synthesis method dictates the final
MOF crystal quality, defect density, crystal size, and morphology and enables interfacial growth [31, 32].
The MOF materials can afterward be processed, e.g. as thin films or freestanding membranes, or formu-
lated e.g. by mixing with polymers, palleted, and processed to the required shapes for the final device
(33, 34].

The enormous amount of research related to functional material systems based on MOFs, starting from
the synthesis of the molecular components, their assembly into MOF crystals with different topologies
and morphologies, and their integration and testing in the final device represents a hidden treasure [35].
Exposure of this treasure of data and making it ready for machine learning applications could lead to
the development of tools that guide researchers and accelerate their efforts in the preparation of MOF-
based devices that can address global challenges [36, 37]. To fully exploit this treasure of data, a combi-
nation of tailored research data management tools, efficient data extraction from scientific literature, and
machine learning are essential.

3 Data extraction

One of the main challenges in applying machine learning to problems of high scientific relevance is the
lack of openly accessible, structured, and machine-readable data. Existing databases, typically main-
tained and extended by particular scientific communities (e.g. protein structure database, certain MOF
databases, crystal structure databases, etc.), can be used to train machine learning models for particular
tasks, e.g. the prediction of materials properties. However, the majority of potentially relevant data gen-
erated in scientific labs are not published at all, and from the fraction that is published, the majority is
published in the form of graphs, tables, and non-structured text. Therefore, the extraction of data from
scientific literature opens a vast amount of yet untapped possibilities to train machine learning mod-

els and use them to predict materials properties, extract and learn relevant relationships in the data,

and eventually discover or design new materials. In the following, we will describe approaches to extract
structured data from publications, focussing on text extraction but also discussing the extraction of in-
formation from tables, graphs, and images. Data extraction in other scientific domains, e.g. biology dates
back more than 20 years [38], with seminal work in the late 90s, e.g. Andrade et al. [39]. One of the ear-
liest attempts to automatically extract information from chemistry literature was OSCAR [40] and based
on that the ChemicalTagger method in 2011 [41]. ChemicalTagger is a rule-based multistep method based
on tokenization (preprocessing of raw text), tagging (using OSCAR and regular expressions), phrase pars-
ing (assignment of syntactical structure to text), and finally action phrase identification (extraction of
chemical information) based on parse trees. The ChemDataExtractor Toolkit developed by Cole and
coworkers starting in 2016 [42, 43] extends the rule-based natural language processing approach further,
among others with machine learning methods, and adds functionality for table extraction [43]. During
the last years, machine learning approaches started to play an increasingly important role in literature
data extraction, where e.g. article section relevance scores [44] and learned word embeddings [44, 12]
were used to enhance existing information extraction methods, or conditional random field models were
used. With increasing capabilities of language models such as BERT [45] and GPT [46], new possibilities
for extracting information in literature are generated. Seminar examples of literature extraction methods
based on large language models include MatSciBERT by Gupta et al. [47]; a fine-tuned BERT model for
materials science by Huang et al. [48], BatteryBert, which among others use question-answering algo-
rithms to translate text to structured information; and a GPT-3 based model by Dunn et al. [49] which
uses fine tuning to directly translate scientific text to structured tabular data in JSON format. Also,
semi-manual and crowd-sourcing-based approaches to extract information from chemistry and materi-
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als science literature were reported [50, 51, 52|, also extracting information from sources other than sci-
entific literature, e.g. lab notebooks to retrieve data about failed experiments which are usually not re-
ported in scientific articles [53]. The automated extraction of data from tables, graphs, and images in
many cases poses even larger challenges than the extraction of data from text. However, a detailed dis-
cussion of methods to extract data from tables [43], graphs [48], and images, in particular optical chem-
ical structure recognition (OCSR), i.e. the extraction of chemical structures from images [54, 55, 56, 57]
is beyond of the scope of this article. Using various ways of literature data extraction, a large number
of databases was generated and published, spanning from synthesis conditions [58, 59, 60, 52, 61, 62]
over materials stability [63] to materials properties, e.g. for magnetic and superconducting properties
(64, 65, 66], semi-conductors [67], battery materials [48], thermoelectric materials [68], glasses [69] and
more general knowledge graphs [12, 70]. In most cases, the databases are only a means to an end, i.e.
to provide sufficient training data for machine learning models for the prediction of synthesis routes and
conditions as well as materials properties of a wider range of materials.

4 Technical challenges and intrinsic limitations

Despite fast progress and promising new avenues related to the increasing use of machine learning and in
particular large language models in literature data extraction, there are still a range of important limita-
tions and challenges. These can be grouped in technical challenges, which can in principle be solved by
improving the data extraction methods, and intrinsic challenges, which concern inherent problems of un-
structured literature as well as the quality and reliability of data that can be extracted from that. Tech-
nical challenges include current limitations of LLMs such as GPT-3 and similar models, which are either
only obtainable via OpenAl’s commercial APIs, or require state-of-the-art GPUs with large amounts of
memory for prediction and retraining, both of which is only affordable for a small group of researchers
worldwide. Another limitation is the availability and free accessibility of research papers, which makes
automated access difficult and again excludes a large number of researchers who do not have access to
all journals and publishers. Furthermore, if access is limited to e.g. abstracts, the amount of information
that can be extracted is rather limited [70]. Furthermore, the use of large language models (compared to
algorithmic, rule-based models) comes at the cost of potentially higher processing times due to the size
and computational cost of the models (even after retraining) [48], as well as a non-negligible amount of
uncertainty regarding the question whether the output of LLMs is fully trustworthy, or if they can po-
tentially output wrong information and give wrong answers or generate data, which is not contained in
the input text [49]. At the same time, LLMs might potentially help analyze complex texts and sentence
structures, which are not extractable using conventional approaches [71]. Beyond that, one of the main
challenges in literature data extraction currently is related to the fact that large amounts of data, e.g.
synthesis protocols are not tabular data but can only be represented in more complex data structures as
they represent flexible, potentially multistep processes with dynamic data types and complex relations
[72], which not only requires the development of extraction methods but also of flexible data blueprints
for complex scientific data. One development in that direction are formal description languages for ma-
terials science and chemistry, e.g. the XDL language by Cronin and coworkers [73]. Intrinsic limitations
mostly refer to the completeness, reliability, unambiguousness, and precision of data reported in scien-
tific literature. Materials entity names might not always be unique and pose fundamental challenges to
extraction algorithms [71]. Databases constructed from extracted literature data might contain noise
and errors [58] due to differences in experimental setups, experimental measurement conditions, report-
ing accuracies, and missing metadata. Furthermore, even if data extraction from graphs and figures be-
comes possible and reliable [48], the reported data might be highly processed and condensed (i.e. lacks
possibilities for further analysis of raw data), has limits in accuracy, and might in many cases be am-
biguous. Those intrinsic challenges are inherent to all approaches that aim to extract and collect data
from published literature, independent of the reliability of the extraction methods used. Such intrinsic
limitations can only be overcome if access to high-quality data and metadata is given directly by the
research groups that produce the data, e.g. through publication in repositories and databases, rather



WILEY-VCH

than through the “information bottleneck” of scientific literature. Given the rapid recent progress in
the development of data extraction methods and more generally natural language processing tools, ma-
jor breakthroughs can be expected in the next years regarding systematic, wide-spread efforts to trans-
fer data and knowledge currently hidden in scientific publications into FAIR data, i.e. into accessible,
findable and computer-readable databases. Main challenges on the way there include the development
of more flexible yet formal and thus computer-readable descriptions of complex data structures, as well
as the further development of data extraction methods to reduce the amount of data missed during ex-
traction as well as to reduce the error rate. However, intrinsic limitations of data extractable from sci-
entific literature make it possible to further develop methods for research data management and FAIR
data publication [74].

5 Research data management to publishing data in a FAIR way

So far, we discussed approaches to extract published data from text, tables, and graphs of research pa-
pers and other scientific texts, along with associated limitations and perspectives. However, even if data
extraction methods can be perfected, one of the main challenges cannot be solved with this approach,
which is the fact that a lot of valuable data is not published at all, as it was considered not successful,
not publication-relevant, or not published for other reasons. Nonetheless, this data can be highly rele-
vant and thus valuable in other contexts, indicating the relevance of approaches to decrease the difficulty
and thus the barrier to publishing the majority of generated data in a FAIR way, to make it accessible
and also findable for other researchers.

* Development and implementation of research data management tools combined with data extraction
from literature and curation * RDM tools (examples we can discuss are Chemotion and NOMAD/FAIRmat)
* Material genome initiative * Data formats * Data templates * Domain/level specific: synthesis of com-
pounds, synthesis of materials, morphology control, device design * Challenges and limitations * Data
cleaning and thus data reliability * Data compatibility and metadata

6 Examples where data mining and machine learning enabled the design
and application of functional material systems

7 Synthesis of FMS

The synthesis of MOF-based functional material systems involves multiple steps, starting from the molec-
ular precursors, over the topology and morphology until the final device integration. Pioneering articles
showed the possibilities to support researchers in finding suitable conditions using machine learning op-
timization algorithms, such as Bayesian Optimization or Genetic algorithms. Examples by B. Shields et
al. [75] for the synthesis of organic molecules with improved yield and Moosavi et al. [76] for the syn-
thesis of MOFs with improved crystallinity and BET surface area demonstrated the possibilities of using
machine learning to rationally optimize the synthesis conditions for organic molecules and MOF crys-
tals. P. Chen et al. [77] demonstrated the possibility to employ machine learning techniques to design
MOFs with desired shapes or morphologies and L. Pilz et al. [78] demonstrated the possibility to op-
timize crystallinity preferential orientation of interfacially grown SURMOF thin films. However, these
approaches rely on the generation of synthesis data on which the algorithms can operate and addition-
ally require knowledge of the involved scientists to set the parameter and condition space for the op-
timization algorithms. By operating on large synthesis databases, M. Seeger et al. [79] demonstrated
that retrosynthesis design is possible for small organic molecules. The work by H. Park et al. [72] and by
Y. Luo et al. [58] demonstrated that automated data extraction can be combined with machine learn-
ing models to predict the synthesis conditions of new MOF's and gain insights into the synthesis pro-
cess. Taken together, these selected examples demonstrate that automated data extraction and machine
learning techniques are well suited for synthesis planning, parameter prediction, and further optimiza-
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tion of MOF-based functional material systems, starting from the molecular components up to the final
MOF structures with desired topology, morphology, and crystal orientation. The combination of such
tools promises to accelerate the discovery of new MOF's, especially if additional data become available
via extraction from scientific literature or collected in tailored electronic lab notebooks and deposited in
openly accessible repositories.

8 Optimization of MOF-based FMS

The design of ideal MOF structures using high throughput computational screening and machine learn-
ing is a highly active and quickly developing area of intense research, [80] enabled by well-structured
databases such as the MOF Cambridge Structural Database Subset [27] and curated databases such as
CoREMOF, [81] MOFX-DB, [82] ToBaCCo, [83] QMOF, [84] and others [85]. Starting from suitable
databases allows the automated screening for ideal structures from a large pool of already synthesized
or predicted materials [86]. Despite numerous publications on the design of MOFs via high-throughput
computational screening and inverse design, there are only very few experimentally realized target struc-
tures [11, 87, 88]. The reasons why many interesting structures have not been realized experimentally
are on the one hand their difficult or very expensive synthesis and on the other hand their poor stability
(89, 72, 90]. In addition, the communication between theoretical and experimental groups is often chal-
lenging, leading to missed opportunities to cooperate [88, 14]. Addressing these issues, pioneering work
based on simulation and machine learning for the predictions of mechanical stability by Moghadam et al.
[91] and synthesizability by R. Anderson et al. [92] could be realized. The alternative approach of au-
tomated data mining from scientific literature combined with machine learning proved also a valuable
strategy to predict important features of MOF. Important prediction tools were developed by Batra et
al. [93] for water stability and Nandy et al. [63, 94] for thermal stability and stability towards solvent
removal. Exploiting the large community knowledge hidden within the scientific literature will further
refine these tools and enable the prediction of tailored MOF based functional material systems for de-
sired applications, that simultaneously fulfill multiple objectives imposed by the processing and opera-
tion conditions. Figure 2 describes the identification of functional material systems for a target applica-
tion, biased by multiple objectives. The relevant data for such machine learning based predictions can
be mined from scientific literature via automated data extraction. In addition, the synthesis of the tar-
get structure can be facilitated via machine learning prediction and optimization tools.

9 Conclusions and outlook

Simulation and machine learning have evolved as important tools for guiding researchers and for iden-
tifying materials of interest. By replacing the traditional heuristic approach, associated with labor and
time intensive trial and error experiments, the computational discovery or inverse design promises to
speed up the development of new materials. However, machine learning approaches rely on sufficient
data in machine readable formats. Combining machine learning with automated data extraction from
scientific literature, using natural language processing, allows not only to gain insights into the ideal de-
sign of functional material systems for a desired application, but also allows to collect information on
important features such as thermal or mechanical stability. A machine learning workflow can be imple-
mented to utilize the extracted data and identify the ideal design, starting from the composition over the
structure across several length scales to the final device. The additional features, such as stability, cost
or abundance of the components can be implemented in the machine learning workflow as bias to iden-
tify the ideal material under the operating conditions of the desired application. In addition, the use of
automatically extracted data on synthesis conditions, in combination with machine learning, can guide
researchers to realize the target materials experimentally. Efficiently operating with such complex inter-
connected and hierarchical data, involved in functional materials systems, requires the use of advanced
research data management tools. In addition, electronic lab notebooks can facilitate the implementation
of feedback loops and the complementary use of new experimental data. Although at an early stage, the
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combination of automated data extraction and machine learning already showed promising results for
the prediction of important properties and synthesis conditions as well as for high throughput computa-
tional screening and inverse design of functional material systems. The development of advanced tools
such as large language models (e.g. GPT-3) allows domain specialists in material science to automati-
cally extract datasets to feed machine learning models. This workflow holds promise to accelerate the
development of new functional material systems, urgently needed to tackle global challenges.

9.1 First Subsection

9.1.1 First Sub Subsection

First lowest-level subsection:

10 Conclusion

11 Experimental Section

First part of experimental section:

Second part of experimental section:
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Figure 1: Figure 1 caption goes here. Reproduced with permission.
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Figure 2: Figure 2 caption goes here. Reproduced with permission.!
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Figure 3: Figure 3 caption goes here. Reproduced with permission.
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